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Many animals learn to recognize conspecifics after an early experience with
them through sexual imprinting. For brood parasitic birds, it is not possible
to develop conspecific recognition using cues provided by their foster parents.
One solution is that a unique species-specific signal triggers the learning of
additional aspects of the conspecific’s phenotype. It has been proposed that
for brood parasitic cowbirds, this signal is an innate vocalization, the chatter.
This vocalization might act in a cross-modal learning process through which
juveniles that listen to the song learn to recognize the visual characteristics
of the song’s producer. We trained two groups of juvenile shiny cowbirds
(Molothrus bonariensis). In one group, individuals listened to the chatter or a
heterospecific call while they observed a stuffed model of the corresponding
species. In the other group, individuals listened to the call of one species (cow-
bird or heterospecific) while they observed the stuffed model of the other
species. In the preference test, juveniles chose the model associated with the
chatter, regardless of whether the model was a cowbird or a heterospecific.
These results show how the auditory system through a species-specific
signal can lead to cross-modal learning of visual cues allowing conspecific
recognition in brood parasitic cowbirds.
1. Introduction
Imprinting is a process by which animals, after an early experience with indi-
viduals or a specific class of objects, learn their characteristics and restrict
their social preferences to them [1,2]. This type of learning has been described
in insects [3], spiders [4], fishes [5] and mammals [6] including humans [7], but
it has been mostly studied in birds [8,9].

Under natural conditions, imprinting allows individuals to recognize and
prefer conspecifics and is adaptive in different social contexts [2]. In birds,
imprinting early in life allows chicks to develop a social attachment with their
parents (filial imprinting) [10,11]. Imprinting also allows individuals to limit pref-
erences that are expressed later in life to form sexual or mating pairs (sexual
imprinting; [9,12]). In addition to learning through experience with the stimulus,
the recognition or social attachment may involve visual and auditory pre-
dispositions [13]. These predispositions are considered a perceptual preference
developed in young animals without the need for a previous experience with
the stimulus [13].

Many works have found that precocial birds like domestic chicken (Gallus
gallus), ducklings (Anas spp.) and young geese (Anser spp.) and quails (Coturnix
coturnix) imprint on objects of different colours, sizes and forms, as well as with
stuffed models of ducks or fowl [1,14] (for review see [9]). Also, Martinho &
Kacelnik [15] showed that ducklings can imprint on a logical relationship
between stimuli (same or different colour or form).

Evidence of imprinting in altricial bird species is more limited than for pre-
cocial ones. Studies of sexual recognition in zebra finches (Taeniopygia guttata)
found that males bred in captivity preferred individuals with the mother’s plu-
mage and bill morph [16,17]. Also, Slagvold et al. [18] studied sexual imprinting
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in the wild through cross-fostering experiments in which
nestlings of great tit (Parus major) or blue tits (Cyanistes
careuleus) were raised either by conspecifics or hetero-
specifics. They found that cross-fostered great tits became
mis-imprinted and failed to pair with conspecifics, whereas
no such effect was seen for cross-fostered blue tits. Their
results showed that bird species can differ in the effect that
early learning has in conspecific recognition.

Imprinting can be based not only on visual cues but also
on acoustic ones. Clayton et al. [19] showed that the early
acoustic social environment of zebra finch nestlings influ-
ences the production of songs of males and the recognition
learning of females. Moreover, Riebel et al. [20] also found
that male and female zebra finches preferred the father’s
song to which they were early exposed, over an unfamiliar
one. Furthermore, when females of the two zebra finch
subspecies were cross-fostered, they presented more sexual
displays during the playback of songs of the foster species
than those of their species [21]. Nevertheless, although male
and female zebra finches prefer familiar vocalizations
[20,22], juveniles that were not exposed to adult conspecific
songs prefer zebra finch songs to control songs [23,24].
These results indicate that other factors besides imprinting
might be involved in conspecific recognition.

Interspecific brood parasites lay their eggs in nests of other
species that provide all the parental care. These species con-
front an interesting problem to learn conspecific cues as they
are raised in the nest of heterospecifics, typically without
any exposure to conspecifics. Yet, they must later find and
recognize conspecifics in order to mate and reproduce success-
fully. Birds typically learn to recognize conspecifics through
early experience, and in most cases could learn features of
their parents (visual, auditory or potentially other stimuli) as
the template for recognizing conspecifics. This information is
not available for interspecific brood parasites and a few other
‘non-parental’ species such as megapodes [25].

Few works have studied imprinting in brood parasites.
Payne et al. [26] investigated host imprinting (preference of
the parasite for the host species that reared it) in the village
indigobird (Vidua chalybeata). They found that females reared
by their normal host (red-billed firefinch Lagonosticta senegala)
preferred to parasitize red-billed nests whereas those reared
by experimental Bengalese finch, Lonchura striata, preferred to
parasitize Bengalese nests. Regarding conspecific recognition
in brood parasites, King & West [27] found that brown-
headed cowbird females raised in auditory and visual isolation
from adult cowbirds showed a copulatory response when they
listened to the song of male cowbirds during the breeding
season. They proposed this response is a mechanism that
ensures species identification and induces sexually appropriate
behaviour.Nevertheless, thismechanismdoes not explain how
juvenile cowbirds first come to recognize conspecifics [27] as at
the time of independence from their foster parents, cowbirds
join them in foraging flocks. Hauber et al. [28] proposed that
conspecific recognition is initiated when young encounter
some unique species-specific signal or ‘password’ (e.g. a voca-
lization, behaviour or other characteristics) that triggers
the learning of additional aspects of the password-giver’s
phenotype. They proposed that for brown-headed cowbirds
(Molothrus ater), the password is the chatter call, an innate
species-specific vocalization. They found that cowbird nest-
lings begged significantly more frequently to playbacks of
chatters than to other avian sounds and hand-reared fledglings
approached playbacks of chatters faster than to vocalizations of
heterospecifics [28]. Also, free-living cowbird fledglings and
adults approached playbacks of chatters more often than play-
backs of control sounds [28]. In addition, neurobiological
studies found indirect evidence supporting the password
hypothesis. Lynch et al. [29] showed that in brown-headed
cowbirds, the auditory forebrain region expresses greater den-
sities of the protein product of the immediate-early gene ZENK
in response to the chatter than to control sounds of mourning
dove (Zenaida macroura) indicating that when cowbirds listen
to the conspecific song, they exhibit a specific neural response
in brain regions that are key for social recognition. Besides,
Louder et al. [30] found that the chatter call enhanced song pro-
duction learning in males and induced a neurogenomic profile
of song familiarity in females, even for heterospecific songs,
when acoustically naive juvenile male and female cowbirds
were exposed to songs paired with chatter calls.

Cross-modal learning refers to the adaptive, synergistic
integration of complex perceptions from multiple sensory
modalities, such that the learning that occurs within any indi-
vidual sensory modality can be enhanced with information
from one or more other modalities [31]. According to the
password hypothesis, the chatter call triggers a cross-modal
learning process through which juveniles that listen to the
song learn to recognize visual characteristics of the song’s
producers. In the non-parasitic white-crowned sparrow
(Zonotrichia leucophrys ariantha), it was found that species-
specific vocalizations serve as a cue for species recognition
and act as a relevant factor in preparation for learning to
sing [32]. Different works [32,33] that studied the effect of
the introductory whistle of the white-crowned sparrow on
song learning found that this introductory whistle serves as
a call to attention that in young birds appears to stimulate
to attend to and memorize the phrases that follow [33].
Interspecific brood parasites are an ideal model to test for
cross-modal learning because in these species the confound-
ing effects of exposure to parental care are naturally
eliminated. Thus, they would serve as one of the cleanest
tests of cross-modal learning to show if the acoustic cues
directly facilitate cross-modal learning of visual cues.

The shiny cowbird (M. bonariensis) is a Neotropical gener-
alist brood parasite that lays its eggs in nests of more than 250
hosts [34]. Similarly to the closely related brown-headed cow-
bird, shiny cowbird nestlings reared by one of its hosts (the
chalk-browed mockingbird, Mimus saturninus) begged more
intensively in response to playbacks of conspecific chatter
calls than to host calls, indicating that they have species-
specific perceptual response [35]. After fledging, shiny cow-
bird young remain associated with their foster parents for
approximately 30–40 days, and, at that time, they join fora-
ging flocks of conspecifics and start roosting with them
(I.C., J.C.R. and V.D.F. 2017–2019, unpublished data).

Until now, studies of brown-headed cowbirds indicate
that nestlings and juveniles recognize the chatter call, and
this vocalization produces a specific neural response associ-
ated with social recognition. Nevertheless, there is no
evidence showing that after cowbirds are exposed to the chat-
ter call, they show a visual preference for the phenotype
associated with the chatter producer. The aim of this work
was to experimentally test if the chatter call of the shiny cow-
bird is the cue that triggers learning of visually perceived
morphological aspects of the producer, driving future social
preferences for conspecifics (i.e. sexual imprinting).
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2. Materials and methods
To carry out the experiment, shiny cowbirds were collected
as nestlings during the breeding seasons of 2019, 2020 and
2021 in ‘Reserve El Destino’, near the town of Magdalena
(35°8008000 S, 57°8203000 W). They were removed from nests of
chalk-browed mockingbirds (N = 9 chicks) and house wrens
(Troglodytes aedon) (N = 18 chicks) at 10 ± 0.2 days of age (they
usually fledge when they are 12–13 days old). Chicks were main-
tained for 4–5 days visually isolated in containers of 12 cm in
diameter and 18 cm in height. They were fed with a wet paste
of premium insect food (CéDé) and Nestle Infant Cereal, 5 Cer-
eals, once per hour until satiation. When they were 13–14 days
old and they were able to remain standing on the perches, we
transferred them to cages of 120 × 40 × 40 cm where they con-
tinue to be visually isolated. When individuals were 30 days
old, we offered them millet seeds and water ad libitum which
they started to consume when they are approximately 40 days
old.

We trained two groups of captive shiny cowbird juveniles. In
one treatment (direct), during training, the individuals (N = 14) lis-
tened to the call and observed the model of the same species
(chatter of the cowbird paired with the model of a cowbird and
call of a heterospecific paired with the model of a heterospecific).
In the other treatment (crossed) individuals (N = 13) listened to
the call of one species but observed the model of the other (chatter
of the cowbird paired with the model of a heterospecific and call
of a heterospecific paired with the model of a cowbird). The con-
specific models were three shiny cowbird females while the
heterospecific models were one rufous-bellied thrush (Turdus rufi-
ventris), one rufous hornero (Furnarius rufus) and one chalk-
browed mockingbird. These heterospecific species were chosen
because they were common species in the study area and we
could obtain models of them from the Natural Science Museum
‘Bernardino Rivadavia’. The number of shiny cowbird juveniles
that were trained with each heterospecific model, for the direct
and crossed treatments respectively, were eight and six for the
rufous-bellied thrush model, four and five for the rufous hornero
model, and two and two for the chalk-browed mockingbird
model. We were careful to not use the heterospecific mockingbird
model for cowbird nestlings collected from mockingbird nests to
avoid a potential bias for early exposure to chalk-browed
mockingbirds.

Playbacks used during training were built from vocalizations
with RMS (root mean square) amplitude standardized within
and between samples. This standardization allows for scaling
different sound files to approximately equal loudness. To build
the playbacks of each species (cowbird and heterospecifics), we
used vocalizations from six individuals of each species that
were randomly ordered to generate six different sequences of
one minute, with one vocalization every 30 s. Vocalizations
were obtained from our own recordings and from the xeno-
canto website (https://www.xeno-canto.org). Training started
when cowbirds were 16.9 ± 0.4 days of age (range 13–19 days).
They received approximately 15 blocks of two sessions (one ses-
sion per day on consecutive days) with an interval of 2 days
between blocks. Each session lasted 1 h, and during this time
the individuals listened to the playback and could observe a
stuffed model located next to the cage at the same height as
the perches. In each treatment, the training was repeated until
the juveniles were 94.5 ± 3.6 days old (range 76–119 days) result-
ing in 15.3 ± 0.5 block sessions (range 12–18 blocks). The timing
of the final session of training was determined based on our
observations of shiny cowbirds and prior studies on brown-
headed cowbirds which indicate that in the wild, juveniles at
this age are observed with adults [36] (I.C., J.C.R. and V.D.F.
2017–2019, unpublished data).
We tested the individuals when they were 95 ± 2.3 days old
(range 75–124 days). Three days before testing, we moved the
birds to an experimental arena for acclimatization. The arena
was an acoustically and visually isolated room of 3 × 3 × 3 m,
with three perches located at 1 m in height. Two perches were
on opposite sides of the room, at 50 cm from two small platforms
of 10 × 10 cm where we located the models during the test. The
third perch (neutral) was placed in the middle of the room.
During the morning of the test day, we placed the cowbird
and the heterospecific models on opposite sides of the aviary
concealed by sliding curtains. When the bird was perched on
the neutral perch, we moved the curtains slowly to allow it to
see both models simultaneously and the test session started.
No playbacks were emitted during the test session. We filmed
the session for 15–30 min. We used two variables to determine
the preference of individuals for one of the models: (i) the iden-
tity of the model to which the bird approached first and (ii) the
proportion of time the bird was on the perch closer to each
model. Sample sizes were 14 birds (10 females and 4 males) for
the ‘direct’ treatment and 13 birds (6 females and 7 males) for
the ‘crossed’ treatment.

(a) Statistical analyses
We compared the number of juveniles that first approached the
model paired with the chatter in each treatment through a
Fisher Exact test. To determine if the proportion of time juveniles
spent with the model paired with the chatter (response variable)
differed between treatments (predictor variable), we performed a
GLM with beta error distribution and log link function [37]. To
determine if in each treatment the proportion of time juveniles
spent with the model paired with the chatter differed from 0.5,
we evaluated the P of the intercept when it included one or the
other level of the treatment. We transformed the response vari-
able (y) following [38] as y × (n− 1) + 0.5)/n, where n is the
number of observations. We used the R software, version 3.4.0
[39], and the R Studio, version 1.0.143 [40]. The analysis of
data was conducted using the betareg package (betareg package
v. 3.1-4 (1) [41].
3. Results
In both treatments during the preference test individuals first
approached the model that was associated during training
with the chatter call (table 1). In the ‘direct’ treatment, 12
of 14 individuals first approached the cowbird model
whereas in the ‘crossed’ treatment 12 of 13 individuals first
approached the heterospecific model (Fisher exact test,
p < 0.0001). There were no differences between treatments in
the proportion of time birds spent near the model associated
during the training with the chatter (figure 1, GLM with beta
error distribution and log link function, intercept: estimate ±
s.e. = 1.20 ± 0.32, Z = 3.77, p = 0.0002, ‘crossed’ treatment:
estimate ± s.e. = 0.06 ± 0.42, Z = 0.15, p = 0.88). In both treat-
ments, the birds spent more time near the model associated
during training with the chatter call than near the model
associated with the heterospecific call (figure 1, ‘direct’ treat-
ment: X = 0.77, IC 95% = 0.54–0.80, p = 0.0002, ‘crossed’
treatment: X = 0.78, IC 95% = 0.53–0.81, p = 0.0001).
4. Discussion
In the preference test, shiny cowbird juveniles preferred
the model associated with the playback of the chatter call
during training, approaching this model first and spending

https://www.xeno-canto.org
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Figure 1. Treatments and results of the experiment. (a) To test if shiny cowbird juveniles use the chatter call as the cue that triggers the learning of some
morphological aspects of the producer, we trained two groups of captive cowbirds. In the ‘direct’ treatment, during the training, cowbirds (N = 14) listened
to the call and observed the stuffed model of the same species, while in the ‘crossed’ treatment, during the training, cowbirds (N = 13) listened to the call
of one species but observed the stuffed model of the other species. In the figure are represented the juvenile shiny cowbird inside the rectangle (individual
cage), the conspecific model above the sonogram of the chatter call and one of the heterospecific models (the mockingbird) above the sonogram of one of
its calls. Each cowbird juvenile was trained with only one heterospecific model and its corresponding calls. For clarity, the other heterospecific models and the
sonograms of their calls used in the experiment are not shown. (b) Proportion of time that juvenile shiny cowbirds of direct and crossed treatments spent
near the conspecific and heterospecific models during the preference test. Black bars correspond to models paired with chatter call and grey bars correspond
to models paired with heterospecific call.

Table 1. Experimental design and results of the preference test. In both
treatments, juveniles received 15 blocks of two sessions (one session per
day on consecutive days) with an interval of 2 days between blocks. In the
‘direct’ treatment, 14 cowbirds received in one session playbacks of the
shiny cowbird chatter call associated with a stuffed model of a cowbird,
and in the other block session, playbacks of a heterospecific call associated
with the stuffed model of a heterospecific (rufous-bellied thrush Turdus
rufiventris; rufous hornero, Furnarius rufus, or chalk-browed mockingbird
Mimus saturninus). In the ‘crossed’ treatment, 13 cowbirds received, in one
session, the playbacks of the cowbird chatter associated with a stuffed
model of a heterospecific, and in the other block session, the playbacks of
a heterospecific call associated with the stuffed model of a shiny cowbird.
The training was conducted since juveniles were 17 days old until they
were 94 days old. The column on the right indicates the number of
individuals that first approached the model associated with the playback in
the preference test conducted when juveniles were 95 days old.

treatment playback

model
associated
with the
playback

preference
for the
cowbird
model

direct chatter call cowbird 12/14

heterospecific

call

heterospecific

crossed chatter call heterospecific 1/13

heterospecific

call

cowbird
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more time close to it than to the model associated with the
playback of the heterospecific call, regardless of whether
the model associated with the chatter was conspecific or het-
erospecific. This result indicates that shiny cowbirds use the
chatter call as a password to develop a social preference for
the phenotype of the individual that produces this vocaliza-
tion and is the first direct evidence supporting the
password hypothesis as the mechanism for explaining how
an interspecific brood parasite can learn the phenotypic
characteristics of their conspecifics.

Individuals can imprint during a time window called the
sensitive period [13,14]. For brood parasites, there is no clear
information on when this sensitive period starts and how
long it lasts. Unlike other bird species that imprint during
the first days of life [11], the sensitive period in brood para-
sites should be delayed until individuals can receive the
correct information [42]. Thus, the sensitive period should
start after parasites fledge from host nests and continue
until they join conspecific flocks. During this time, parasitic
juveniles may interact with conspecific adults that produce
the chatter call [27,43] and learn their phenotypic character-
istics. On two occasions, we observed shiny cowbird
females perched near and soliciting preening from conspeci-
fic juveniles of 20–30 days old (I.C., J.C.R. and V.D.F. 2017–
2019, unpublished data). Adults of other brood parasitic
species also interact with parasitic fledglings in host terri-
tories (reviewed in [42,43]). These first interactions during a
potentially sensitive period would promote the start of con-
specific recognition [42]. Another possibility would be that
cowbirds are sensitive to the password since the time they
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hatch but develop a conspecific recognition template after
they became independent from hosts [28,32,44]. This possi-
bility is supported by studies showing that cowbird’s
nestlings begged more intensively in response to playbacks
of conspecific chatter calls than to host calls [28,35].

Louder et al. [30] found that the exposure of brown-headed
cowbirds juveniles to the chatter improves their song learning.
When hand-raised juvenilemaleswere exposed to playbacks of
canaries (Serinus canaria) songs followed by a chatter, they
reproduced the heterospecific songs better than if they listened
to the canary followed by coos of mourning doves (Zenaida
macroura). Moreover, males exposed to chatter calls expressed
more genes related to auditory learning and neuroplasticity,
whereas females exposed to chatter calls expressed genes
involved in long-term memory [30]. These results would
indicate that the chatter call can initiate social learning, increas-
ing song acquisition in males and recognition learning in
both sexes.

The results of this work show how the auditory password
system through a species-specific signal can lead to cross-
modal learning of visual cues allowing conspecific recognition
in brood parasitic cowbirds. This resolves a significant puzzle
to understanding the learning of conspecific recognition in
obligate interspecific brood parasites, but there is potential
for this to be a general feature of songbirds. Similar ‘password’
type systems guide learning of conspecific songs in other, non-
parasitic songbirds. Famously, the introductory whistle of
white-crowned sparrows serves this purpose (e.g. [32,33]).
However, no previous work has tested whether such acoustic
cues that ‘turn on’ learning may also act to initiate cross-
modal learning in other songbirds. Generally, researchers
assume that exposure to parents during the period of parental
care leads to learning of conspecific visual cues. However, after
the results of this study, it would be possible to think that
acoustic-to-visual cross-modality is a general property of
species recognition learning in songbirds.

To summarize, previous studies in brown-headed cow-
birds have provided indirect evidence supporting the
‘password hypothesis’ but until now there was no direct
evidence showing that listening to the chatter call triggers
the learning of the visual characteristics associated with the
producer. In our study, we experimentally showed that
the encounter of a parasitic juvenile with an individual
that produces the chatter results in the development of a
preference for the phenotype characteristics of the individual
that produces this vocalization. Thus, our results provide
an explanation for how brood parasites, which do not have
the opportunity to develop conspecific recognition using
cues provided by the adults that raise them, can learn to
recognize conspecifics.
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